
Lecture 09: Independent Bounded Differences
Inequality

Independent Bounded Differences



Overview

Today we shall see a result referred to as the “Independent
Bounded Differences Inequality”
We shall not see the proof of this result today. In the future,
when we prove the “Azuma’s Inequality,” the proof of this
theorem shall follow as a corollary
Today, we shall see how a large class of concentration results
follow as a consequence of this concentration inequality. In
fact, one such consequence shall look very similar to the
“Talagrand Inequality,” which we shall study in the next lecture
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Independent Bounded Differences Inequality I

Let Ω1, . . . ,Ωn be sample spaces

Define Ω := Ω1 ×· · · × Ωn

Let f : Ω→ R
Let X = (X1, . . . ,Xn) be a random variable over Ω such that
each Xi is independent and Xi is a random variable over the
sample space Ωi

Definition
A function f : Ω→ R has bounded differences if for all x , x ′ ∈ Ω,
there exists i ∈ {1, . . . , n} such that x and x ′ differ only at the i-th
coordinate, then the output of the function

∣∣f (x)− f (x ′)
∣∣ 6 ci .

We state the following bound without proof.
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Independent Bounded Differences Inequality II

Theorem (Bounded Difference Inequality)

P
[
f (X)− E

[
f (X)

]
> E

]
6 exp

−2E 2/

n∑
i=1

c2
i


Applying the same theorem to −f , we deduce that

P
[
f (X)− E

[
f (X)

]
6 −E

]
6 exp

−2E 2/

n∑
i=1

c2
i


Intuitively, if all ci = 1, the random variable f (X) is concentrated
around its expected value E

[
f (X)

]
within a radius of

√
n
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Example

Note that the Chernoff-Hoeffding’s bound is a corollary of this
theorem
Let Gn,p be a random graph over n vertices, where each edge
is included in the graph independently with probability p. Note
that we have m random variables, one indicator variable for
each edge in the graph. Note that the chromatic number of
graph is a function with bounded difference.
Several graph properties like the number of connected
components
Longest increasing subsequence
Max-load in balls-and-bins experiments
What about the max-load in the power-of-two-choices?
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Applicability and Meaningfulness of the Bounds

Although the theorem is applicable to a problem, the bound
that it produces might not be a meaningful bound
The bound says that the probability mass is concentrated
within ≈

√
n around the expected value E

[
f (X)

]
If the expected value E

[
f (X)

]
is ω(
√
n) then the theorem

gives a meaningful bound
However, if E

[
f (X)

]
is O(

√
n) then the theorem does not give

a meaningful bound. For example, the longest increasing
subsequence, max-load in balls-and-bins experiments
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Hamming Distance

Next we shall see a powerful application of the independent
bounded difference inequality. First, let us introduce the definition
of Hamming Distance

Definition (Hamming Distance)

Let x , x ′ ∈ Ω := Ω1 ×· · · × Ωn. We define

dH(x , x ′) :=
∣∣∣{i : 1 6 i 6 n and xi 6= x ′i

}∣∣∣
The Hamming distance of x and x ′ bounds the number of
indices where x and x ′ differ
Let A ⊆ Ω and dH(x ,A) := miny∈S dH(x , y).

Definition
The set Ak is defined as follows

Ak :=
{
x ∈ Ω: dH(x ,A) 6 k

}
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Distance from Dense Sets

Lemma
Let A ⊆ Ω. The following bound holds.

P [X ∈ A] · P
[
dH(X,A) > E

]
6 exp(−E 2/2n)

Intuition
Suppose P [X ∈ A] = 1/2, then we have

P [X ∈ AE−1] > 1− 2 exp(−E 2/2n)

That is, nearly all points lie within E ≈
√
n distance from the

dense set A
Note that this result holds for all dense sets A
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Proof based on the Bounded Difference Inequality I

Our objective is to prove that

P [X ∈ A] · P
[
dH(X,A) > E

]
6 exp(−E 2/2n).

Observe that the above inequality is a consequence of the
following second inequality:

min
{
P [X ∈ A] ,P

[
dH(X,A) > E

]}
6 exp(−E 2/2n).

Therefore, we will prove this second inequality instead.

Note that dH(·,A) is a bounded difference function with
ci = 1, for i ∈ {1, . . . , n}
Define µ = E

[
dH(X,A)

]
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Proof based on the Bounded Difference Inequality II

Consider the inequality (using the independent bounded
difference inequality for the lower tail)

P [X ∈ A] = P
[
dH(X,A)− µ 6 −µ

]
6 exp(−2µ2/n).

We will call this the “density bound.”

Now we are ready to prove the “second inequality.”
1 Case 1. Suppose E > 2µ.

min
{
P [X ∈ A] ,P

[
dH(X,A) > E

]}
6 P

[
dH(X,A) > E

]
= P

[
dH(X,A)− µ > (E − µ)

]
6 exp(−2(E − µ)2/n)
(By the upper tail bound)

6 exp(−E 2/2n).
(Because E > 2µ)
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Proof based on the Bounded Difference Inequality III

2 Case 2. Suppose 0 6 E < 2µ.

min
{
P [X ∈ A] ,P

[
dH(X,A) > E

]}
6 P [X ∈ A]

6 exp(−2µ2/n)
(By the “density bound” inequality)

6 exp(−E 2/2n).
(Because 0 6 E < 2µ)

Therefore, irrespective of whether E > 2µ or 0 6 E < 2µ, the
following bound holds

min
{
P [X ∈ A] ,P

[
dH(X,A) > E

]}
6 exp(−E 2/2n).

This completes the proof of our result.
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An Application of “Distance from Dense Sets”

(A Slightly weaker-version of) Chernoff-bound
Consider a uniform distribution over Ω = {0, 1}n

Let A be the set of all binary strings that have at most n/2 1s.
The density of this set is > 1/2
A string x with dH(x ,A) > E is equivalent to x having
(n/2) + E 1s
So, the probability of an uniformly sampled binary string has
(n/2) + E 1s is at most 2 exp(−E 2/2n)
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