Lecture 09: Independent Bounded Differences Inequality

Overview

- Today we shall see a result referred to as the "Independent Bounded Differences Inequality"
- We shall not see the proof of this result today. In the future, when we prove the "Azuma's Inequality," the proof of this theorem shall follow as a corollary
- Today, we shall see how a large class of concentration results follow as a consequence of this concentration inequality. In fact, one such consequence shall look very similar to the "Talagrand Inequality," which we shall study in the next lecture

Independent Bounded Differences Inequality I

- Let $\Omega_{1}, \ldots, \Omega_{n}$ be sample spaces
- Define $\Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$
- Let $f: \Omega \rightarrow \mathbb{R}$
- Let $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ be a random variable over Ω such that each \mathbb{X}_{i} is independent and \mathbb{X}_{i} is a random variable over the sample space Ω_{i}

Definition

A function $f: \Omega \rightarrow \mathbb{R}$ has bounded differences if for all $x, x^{\prime} \in \Omega$, there exists $i \in\{1, \ldots, n\}$ such that x and x^{\prime} differ only at the i-th coordinate, then the output of the function $\left|f(x)-f\left(x^{\prime}\right)\right| \leqslant c_{i}$.

We state the following bound without proof.

Independent Bounded Differences Inequality II

Theorem (Bounded Difference Inequality)

$$
\mathbb{P}[f(\mathbb{X})-\mathbb{E}[f(\mathbb{X})] \geqslant E] \leqslant \exp \left(-2 E^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

Applying the same theorem to $-f$, we deduce that

$$
\mathbb{P}[f(\mathbb{X})-\mathbb{E}[f(\mathbb{X})] \leqslant-E] \leqslant \exp \left(-2 E^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

Intuitively, if all $c_{i}=1$, the random variable $f(\mathbb{X})$ is concentrated around its expected value $\mathbb{E}[f(\mathbb{X})]$ within a radius of \sqrt{n}

Example

- Note that the Chernoff-Hoeffding's bound is a corollary of this theorem
- Let $\mathcal{G}_{n, p}$ be a random graph over n vertices, where each edge is included in the graph independently with probability p. Note that we have m random variables, one indicator variable for each edge in the graph. Note that the chromatic number of graph is a function with bounded difference.
- Several graph properties like the number of connected components
- Longest increasing subsequence
- Max-load in balls-and-bins experiments
- What about the max-load in the power-of-two-choices?

Applicability and Meaningfulness of the Bounds

- Although the theorem is applicable to a problem, the bound that it produces might not be a meaningful bound
- The bound says that the probability mass is concentrated within $\approx \sqrt{n}$ around the expected value $\mathbb{E}[f(\mathbb{X})]$
- If the expected value $\mathbb{E}[f(\mathbb{X})]$ is $\omega(\sqrt{n})$ then the theorem gives a meaningful bound
- However, if $\mathbb{E}[f(\mathbb{X})]$ is $O(\sqrt{n})$ then the theorem does not give a meaningful bound. For example, the longest increasing subsequence, max-load in balls-and-bins experiments

Hamming Distance

Next we shall see a powerful application of the independent bounded difference inequality. First, let us introduce the definition of Hamming Distance

Definition (Hamming Distance)

Let $x, x^{\prime} \in \Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$. We define

$$
d_{H}\left(x, x^{\prime}\right):=\mid\left\{i: 1 \leqslant i \leqslant n \text { and } x_{i} \neq x_{i}^{\prime}\right\} \mid
$$

- The Hamming distance of x and x^{\prime} bounds the number of indices where x and x^{\prime} differ
- Let $A \subseteq \Omega$ and $d_{H}(x, A):=\min _{y \in S} d_{H}(x, y)$.

Definition

The set A_{k} is defined as follows

$$
A_{k}:=\left\{x \in \Omega: d_{H}(x, A) \leqslant k\right\}
$$

Distance from Dense Sets

Lemma

Let $A \subseteq \Omega$. The following bound holds.

$$
\mathbb{P}[\mathbb{X} \in A] \cdot \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right] \leqslant \exp \left(-E^{2} / 2 n\right)
$$

Intuition

- Suppose $\mathbb{P}[\mathbb{X} \in A]=1 / 2$, then we have

$$
\mathbb{P}\left[\mathbb{X} \in A_{E-1}\right] \geqslant 1-2 \exp \left(-E^{2} / 2 n\right)
$$

That is, nearly all points lie within $E \approx \sqrt{n}$ distance from the dense set A

- Note that this result holds for all dense sets A
- Our objective is to prove that

$$
\mathbb{P}[\mathbb{X} \in A] \cdot \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right] \leqslant \exp \left(-E^{2} / 2 n\right)
$$

Observe that the above inequality is a consequence of the following second inequality:

$$
\min \left\{\mathbb{P}[\mathbb{X} \in A], \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right]\right\} \leqslant \exp \left(-E^{2} / 2 n\right)
$$

Therefore, we will prove this second inequality instead.

- Note that $d_{H}(\cdot, A)$ is a bounded difference function with $c_{i}=1$, for $i \in\{1, \ldots, n\}$
- Define $\mu=\mathbb{E}\left[d_{H}(\mathbb{X}, A)\right]$
- Consider the inequality (using the independent bounded difference inequality for the lower tail)

$$
\mathbb{P}[\mathbb{X} \in A]=\mathbb{P}\left[d_{H}(\mathbb{X}, A)-\mu \leqslant-\mu\right] \leqslant \exp \left(-2 \mu^{2} / n\right)
$$

We will call this the "density bound."

- Now we are ready to prove the "second inequality."
(1) Case 1. Suppose $E \geqslant 2 \mu$.

$$
\begin{aligned}
\min \left\{\mathbb{P}[\mathbb{X} \in A], \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right]\right\} & \leqslant \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right] \\
& =\mathbb{P}\left[d_{H}(\mathbb{X}, A)-\mu \geqslant(E-\mu)\right] \\
& \leqslant \exp \left(-2(E-\mu)^{2} / n\right) \\
& (\text { By the upper tail bound) } \\
& \leqslant \exp \left(-E^{2} / 2 n\right) \\
& \text { (Because } E \geqslant 2 \mu)
\end{aligned}
$$

(2) Case 2. Suppose $0 \leqslant E<2 \mu$.

$$
\begin{aligned}
\min \left\{\mathbb{P}[\mathbb{X} \in A], \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right]\right\} & \leqslant \mathbb{P}[\mathbb{X} \in A] \\
& \leqslant \exp \left(-2 \mu^{2} / n\right)
\end{aligned}
$$

(By the "density bound" inequality)

$$
\leqslant \exp \left(-E^{2} / 2 n\right)
$$

(Because $0 \leqslant E<2 \mu$)

- Therefore, irrespective of whether $E \geqslant 2 \mu$ or $0 \leqslant E<2 \mu$, the following bound holds

$$
\min \left\{\mathbb{P}[\mathbb{X} \in A], \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant E\right]\right\} \leqslant \exp \left(-E^{2} / 2 n\right)
$$

This completes the proof of our result.

An Application of "Distance from Dense Sets"

(A Slightly weaker-version of) Chernoff-bound

- Consider a uniform distribution over $\Omega=\{0,1\}^{n}$
- Let A be the set of all binary strings that have at most $n / 21$ s. The density of this set is $\geqslant 1 / 2$
- A string x with $d_{H}(x, A) \geqslant E$ is equivalent to x having $(n / 2)+E 1 \mathrm{~s}$
- So, the probability of an uniformly sampled binary string has $(n / 2)+E 1 \mathrm{~s}$ is at most $2 \exp \left(-E^{2} / 2 n\right)$

